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Summary

The Oriented-Eddy Collision (OEC) turbulence model hypothesizes that
turbulent flow can be modeled as a collection of interacting fluid particles (or eddies)
which have fluctuations and an inherent orientation. The model has been formulated in
the form of a set of partial differential equations. Underlying this approach is a
unique PDF collision model that includes the effect of orientation information along
with the usual position and velocity information in the formulation of the
probability density function. This adds important physics to the model and
differentiates it from most other PDF models and Reynolds-Averaged Navier-
Stokes models.

The Oriented Eddy Collision model exactly captures rapid distortion, which
is a major shortcoming of most prior Reynolds stress transport models. The ability
to predict highly non-equilibrium flow situations well is a major feature of the model.
The model automatically (via its construction) satisfies realizability and other known
mathematical constraints. It is readily extensible to complex geometries and additional
physical affects (such as compressibility, particles, etc). The model has been
implemented in the open source CFD framework OpenFOAM for rapid dissemination.
It has been tested extensively on basic turbulent flow benchmarks and, more recently,
on flows with solid boundaries.

Background

The traditional approach to modeling turbulence (or other types of non-
Newtonian fluids) is to hypothesize equations for the unknown stress tensor. lin
turbulence this is the Reynolds stress tensor. Due to the fact that the eddies which
make up the flow are roughly the same size as the gradients in the mean flow these
eddies respond on similar timescales as the mean flow. This means that algebraic
models are rarely predictive, and time-dependent evolution equations for the stress
tensor must be hypothesized. In turbulence, these evolution equations are the exact



but unclosed Reynolds stress transport (RST) equations. Simpler turbulence models,
such as the k—& model or algebraic Reynolds stress models are simplifications of the
RST equations.

There is a strong analogy between turbulent fluid flow and non-Newtonian or
granular flows. Very similar to turbulent flows, transport equations are very often
developed for non-Newtonian stress tensors (the Oldroyd-B model and FENE-P
models (Herrechen, et al. 1997) are examples). In fact, we note that many important
turbulence modeling concepts (realizability, material frame indifference, tensor
consistency) actually find their origins in the non-Newtonian literature at this transport
equation level. This work is predicated on treating turbulence modeling in a fashion
that is similar to non-Newtonian fluid modeling.

It has long been recognized in the non-Newtonian fluid community that transport
equation models have serious limitations. An alternative approach is to model the fluid
at the particle collision level rather than using a transport equation for the stress. This
approach is more versatile, and in many ways, more fundamental. For example,
modeling a gas as particles with binary elastic hard sphere collisions gives the Navier-
Stokes equations and the perfect gas law when the density is high, but also the correct
gas behavior even when the density is low (when Navier-Stokes is not valid). In this
work, we investigated the possibility of modeling turbulence as a collection of
interacting oriented particles (which will turn out to be disks or rods).

Once a certain collision behavior has been hypothesized there are three very
different ways to solve the particle system numerically and obtain a prediction of the
fluid behavior. The most straightforward technique is the ‘molecular dynamics’
approach where one numerically tracks all the particles in the domain, and performs
collisions when they occur. This approach has a computational cost equivalent to large
eddy simulation (LES) and is not considered further. The other two approaches note
that one does not really care what happens to individual particles but only what
happens to particles on average. The quantity of interest then becomes the probability
density function that describes the probability that a particle (at a certain place and
time) has a certain velocity. The evolution of the probability distribution function, f,
obeys the exact equation

o o, o A _d

ot ‘ox, 'ov, dt onm dt

i

(1)

collisions

where a, is the acceleration due to external forces (like gravity), n, is the particle

orientation, and the right-hand side describes the average affect of the collisions on the
PDF. Itis this average collision behavior that we now wish the model to predict. This
collision term is also what gives the ensuing model its name. Our collision models
assume the collision term has a Fokker-Planck form (see Equations (2) through (4)).

There are three different ways to solve this PDF equation. Using the
equivalence between the Fokker-Planck equation and the Langevin equation




(Brownian motion), it is possible to construct a Lagrangian particle method. This is
essentially the approach extensively researched by Pope (1994, 2000) and coworkers
(with the major difference from this work being that that Pope and others typically do
not use oriented eddies, just colliding spheres). In this particle approach, the
Lagrangian particles move like Brownian dust particles. They move with the mean flow
and are randomly perturbed using a prescription given by the model. In this way each
particle is independent from all the others, and simply interacts with the average of all
the other particles (i.e. the mean flow, and average turbulence statistics). This Monte-
Carlo approach is less expensive than tracking and implementing individual collisions
(‘molecular dynamics’ approach) but is still expensive because a large statistical
sample of particles that is required. These methods significantly over-resolve the
shape compared to what is necessary to model the turbulence.

Using a mesh based method (rather than Monte-Carlo sampling) is also possible. A
mesh based method can use a very coarse mesh, thereby lowering the costs involved.
A very coarse mesh in velocity space is an idea borrowed from Lattice-Boltzmann
numerical methods for solving the Navier-Stokes equations. These methods solve a
PDF equation with a very simple collision term that is intended to give Navier-Stokes
(Newtonian) fluid behavior. The difference in this work is that we solve a PDF
equation with a much more complex collision term (Fokker-Plank), which results in
RANS behavior for the fluid (rather
than Newtonian). The coarse
mesh is acceptable in both cases
because the interest is not in the
PDF itself but in its lowest order

Collision Models

moments - the mean flow and the PDF Methods Particle
stresses. These low-order Tracking
moments can be reasonably (‘molecular
extracted from a very coarse dynamics’)

approximation of the PDF.

Note that the Langevin approach is Coa_rse Discretization Langevin Equation
equivalent to approximating the (‘lattice methods’) (Lagrangian particle methods)

PDF with a random sample, and a

large sample is needed even t0 Figure 1: Taxonomy of classic collision model approaches.
approximate the Ilow order

moments reasonably well. The Langevin approach is slower because it provides more
information (about the higher order moments). Unfortunately, one has little interest, in
engineering turbulence models, in the extra information the Langevin solution method
provides. These first two approaches to solving the collision model (and the brute
force LES-type approach of tracking actual eddies), is shown in Figure 1.

While the coarse mesh approach is inspired by the success of lattice-Boltzmann
numerical methods, the approach must be numerically different. This is because the
PDF governing molecular interactions (Lattice-Boltzmann) has a variance (width) that
is much larger than the mean and which is essentially constant (related to the speed of
sound). In contrast, the PDF for turbulence has a variance which is much smaller than




the mean (turbulence intensities are measured in percent), and which can vary
significantly (in time or space). This is illustrated in Figure 2:

0 0
Figure 2: Left - a typical PDF for molecules. Right - A typical PDF for turbulence.

To capture the turbulence PDF with only three points it is necessary to have a moving
adaptive mesh in velocity space. In order to avoid losses due to interpolating one
mesh to another as the mesh moves, we implemented a fully conservative scheme in
which the mesh moves continuously in time (during the time step). This uses
technology previously developed by Perot & Nallapati (2003) for moving meshes in
physical space. In actual practice the PDF is three-dimensional. An isosurface of an
actual PDF (the 50% value) is shown below. This PDF is modeling the behavior of the
Le Penven et al (1985) return-to-isotropy Case Il > 0 experiment. Note the fairly large
changes in the shape and size of the distribution even for this simple experiment. It
can also be seen in this figure that a spherical PDF corresponds to isotropic
turbulence.

Figure 3: Evolution of the 50% isosurface of the PDF for the return-to-isotropy experiment of
Le Penven, et al.

The coarse mesh approach was used in our initial ONR work, but the current
model actually uses a third PDF equation solution approach that ends up being far
more familiar to the CFD users. In the current project we took moments of the PDF
collision equation over velocity space in order to construct a set of partial differential



equations for the behavior of each type of oriented disk. No velocity space meshing (or
Monte-Carlo sampling) is now necessary. This third approach can be directly included
into PDE code frameworks (such as OpenFoam). It has the disadvantage that the
third-order correlations must now be modeled (in the pure PDF solutions they can be
deduced from the PDF). This means the turbulent diffusion processes must now be
modeled.

Theoretical background for the un-orientated eddy collision (EC) model

Lundgren (1967) first derived the exact expression for the collision term in the
PDF evolution equation for turbulence. As might be expected, this collision term
cannot be expressed solely in terms of the PDF, and solution of the PDF evolution
equation therefore requires a model for the collision term. Original development of the
OEC model focused on generalizations of the Fokker-Plank collision model (that was
derived to describe Brownian motion). In its simplest form this collision model has the
form,

o =—i alv,—u —Z
[ (i i)f'—'|+bav.2 (2)

dt ov
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where u,=jv,fdv is the mean velocity and a and » are model constants. For

turbulence this needs to be generalized. Pope and coworkers (Pope 2000, Reynolds
1995, Van Slooten 1996) use the form,
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where v';, =v —u, is the fluctuating velocity and the first term (the drift term) now has a

matrix model parameter G,, and a viscous term has been added for near wall (low Re

number) calculations. The conversion of these Fokker-Planck models to a Langevin
equation for numerical solution dictates that the diffusion term (with b) be isotropic and
not have a tensor coefficient.

Original development of the OEC model analyzed the following even more
generalized Fokker Plank model.

a

dt
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The last term on the right hand side accounts (exactly) for the coarse mesh motion in
velocity space (to track the PDF). The first three terms involve model tensors.
Sometimes, these tensors are isotropic and governed by a single parameter. The
viscous terms account for low Reynolds number effects and strong inhomogeneity.
They do not involve any additional parameters and were derived via analysis and the
condition that the model be exact as it approaches a wall (in the laminar sub layer).

The zeroth moment of the PDF equation (Equation (4)) is the mass conservation
equation. The first velocity moment of the PDF equation gives the momentum
equation,

6u,.+5(u,u,,+1§n)_an=i[wmi] )
ot ax, ax.
This implies that the acceleration is given by a,=-p, +(uu,,),. The viscous
contribution to this acceleration is necessary only if the viscosity is not constant.
Taking the moment of the modeled PDF equation with respect to v',v' gives the
Reynolds stress transport equation,
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where T, .
H,, and J, determine the model. Complex dissipation and pressure-strain models

can be implemented via these tensors.

=[v'v', v\ fdvand K =4R, is the turbulent kinetic energy. The tensors G

if?

The equation for the total resolved (or mean) kinetic energy,
E, =J--%v,.v.fdv—-%R,.,, is
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The resolved kinetic energy correctly loses energy as a result of large scale
dissipation, and via turbulence production. It is completely specified and does not
depend on the model coefficients. The details of these derivations can be found in
Chartrand (2005).

When implementing the Fokker-Planck collision model (Eqn. 4) on a coarse
mesh, it is attractive to make the change of variables f’=ln(f). If fis close to



Gaussian (which is expected) then f will be close to parabolic. This parabola can be
accurately resolved and interpolated by the three points available in our scheme. The
evolution equation for f is,

L i -—f- +(a, —a,m,,) of =-G,-G,v ]i+— H,.ji +H, = af af
o ox, ov, Ov, ov; ’avav

I

+i (J,..+vu,..)—a£ +(J, +vu, )6f af vaf +vaf af 8
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While there are more terms to compute in this version, the equation for f is much
more accurate to solve numerically. In addition, low order methods and simple (3
point) difference stencils suffice because f is expected to be very close to quadratic.

The models for the tensors G,, H,, and J, require a time scale to be

dimensionally correct. For this reason an additional transport equation for the
timescale must be included in the model. The un-oriented eddy model therefore used
the standard epsilon transport equation for this purpose since it is very commonly used
in RST models as well. The oriented model obtains the timescale from the orientation
vector whose length represents the inverse of the eddy size. So no scale equation is
necessary in the most recent model implementation.

The Original Model

The original collision model first proposed by Perot and Chartrand (2005) was

P é ¢
GU=C S +C Wy IC Eé‘u—mRu—Ecdé‘u (9)
H,=%C,R, (10)
Jy==5KC}58, (11)
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wnere ¢ =¢€| 1+10y IS the moairie issipation that goes 10 zero in regions
here £ =¢[1+10v|(vK) |/K | is the modified dissipation that goes t in regi

of strong inhomogeneity such as near walls, and P=-R_u, . is the standard turbulent
production rate. The frame invariant strain-rate and rotation-rate tensors are




respectively S, =%(u,_j+uj,,) and W, =-:1):(u,.,j—uj_,)+a,],‘Q where Q,is the rotation

rate of a non-inertial frame of reference.

For comparison with classic RST models, the equivalent Reynolds stress
transport equation would be,

OR 0 0
—=+—uR +—T +\u, R +u R
Ot 8x,. Ox, o ( R jm)
(Co.S,y +CiW, )R, +(CiS, +CrW, R,
P £
+C!,—R -2 R R
p2K mn R,-jRj,- ms” sn (12)
4KC S +iV8R —2v aK(—j
ox, Ox ox, g

Note that the model constant C, does not affect the Reynolds stress transport
equation. However, it does have an effect on the higher order moments (such as 7,,,)

and the turbulent transport term. This constant can be related to the Kolmorgorov
constant (Pope 2000). The other model constants are actually parameters and are
given by,

v, ” vV, " P
~2F  C= —4F  C,=-02F+.006—  (13)

CS
P =
vty v+, £

2

where the eddy viscosity is given by v, =.12FK—A and F =2 det(R,/k) is the standard
£

two-component parameter that is unity in isotropic turbulence and zero for two-
component turbulence.

The transport model for the epsilon equation is standard and is given by

o€ oe &£ 0 o
—5t—+u,-g= (C,P- C28)+5(V+C53VT)ax

i i i

(14)

where C, =143, C, =11/6, C, =0.83, and fairly standard values.



Inspiration for OEC

The analysis above lays the groundwork for the oriented eddy collision model. A
brief review of PDF-based models is in order.

Boltzmann and Fokker-Planck

It is helpful to begin with a simple case, and not consider complications such as
colliding oriented eddies. Instead, consider a collection of particles: an expression can
be found for the number of particles that have some velocity v, at location x, and time

t, called a number density function. The more familiar probability density function is
simply the number density divided by the total number of particles under consideration.
Let f(v,x,,t) be the probability density function. Using this function, one can arrive at
several useful quantities: multiplying f by v, and integrating over all of the possible
velocities (that is, taking the first moment of f and integrating over velocity space),
one can arrive at the mean velocity for the collection of particles, U,:

ey i= L_ v.f (v, x;,t)ay, (15)

where I and dv, imply a triple integral over v,,i=1,2,3. If the mean velocity can be

]

found, perhaps another quantity of interest, uu, can be found. Taking the second

moment of f with the fluctuating velocities v, —U,, recalling the fluctuating velocities
are the total velocity of a given particle v, with the mean velocity of all particles U,

subtracted off:
uu; = [ (4 =U); ~U) [, 5, 8), (18)

once again recognizing that a triple integral exists in Equation (15). Equations (15) and
(16) represent the statistical mechanics of the collection of particles but say nothing
about the physics present in that f has yet to be prescribed. One of the simplest ways
to describe the time evolution of a PDF is through the Boltzmann equation, which
essentially models particle collisions by relaxing their PDFs to the mean:
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with a, representing some body (external) force that may be acting on the fluid (such

as a Coriolis term) and the right hand side representing the way in which the average
of all collisions over time affects the PDF. The left hand side of Equation (17) is exact,
while the right hand side is that which requires a model, the so-called “*collision" term.
An approximation to the Boltzmann equation, such as the one originally proposed by
Bhatnagar, et. al (1954) can be employed and slowly brings f to an equilibrium value,

which usually means a Gaussian distribution. Once a form of f has been chosen, it

can be used in Equation (15) and the mean velocity found (the method in which this is
done will be discussed later). A linear relaxation model may also be employed (see
Perot & Chartrand’s earlier work). Interestingly, for low density flows (meaning flows in
which few particle collisions occur), a simple collision model returns the ideal gas law,
the viscous terms of the Navier Stokes equations, Fourier heat conduction and many
other physical processes. Thus, this method is suited for Newtonian flows, but might
not work well as a turbulence model. Inspecting the second moment and plugging the
Boltzmann equation in to Equation (16) yields an unfortunate result: this simple

collision model predicts that the Reynolds stresses are zero, Ouu,/0t=0. Not only is

this approach flawed, it is in fact useless for capturing the behavior of a turbulent flow.
This is due to the fact that the Boltzmann equations look at fluid interactions purely as
a viscous phenomenon with a single relevant time scale, an idea which sounds familiar
from previous turbulence models considered. It was already determined that this
assumption will never capture turbulence properly, and it is no surprise that this
method fails.

An alternative to the Boltzmann equation is the Fokker-Planck (FP) equation
(also referred to as the Kolmogorov forward equation from Kolmogorov (1942)), which
describes the time evolution of a PDF in a more complicated way:

2 F D)+ Yy o)+ £ 1,5

i i
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with « and S model constants. Equation (18) (adapted from Perot & Chartrand 2005)

represents one of the simplest Fokker-Planck collision models with the right hand side
of Equation (17) replaced by two terms. The right hand side of Equation (18) must be

10



generalized in order to be employed for PDF turbulence model methods. Pope and
others proposed a generalized form, and use it extensively in their PDF method work
(see Pope 2000, Pope 1982, Pope 1983, Perot & Chartrand 2005 and more):

%f(v,-,x,-,t)wi%f(v,-,x,-,t)wi%f(v,,x,-,t)

(19)
=-E[G v, -U)fO, x,,t)]+ﬂ f(v,,x,,t)+v—f(v,, H)

J

where G, is a tensorial modeling parameter, v the fluid viscosity, and noting the

addition of a second order spatial derivative (Laplacian) of the PDF. Unlike the
Boltzmann equation, the FP approach captures more than just viscous Navier-Stokes,
and the second moment is not zero.

The two methods mentioned above relate to the aforementioned Langevin
equation: a Langevin approach can be employed to solve the resulting PDF transport
equations arrived at from plugging either the Boltzmann or the Fokker-Planck collision
models in to Equation (17) and the resulting expression for f in to Equations (15) or

(16). This is because the equations may be solved using ""'normal” methods, that is
using a finite-difference or finite-element method or may be solved by using a particle
approach, the details of which will be avoided here. Using a Langevin approach makes
no changes to the underlying physics - it is simply a particle method solution. When a
Langevin method is used with a Boltzmann equation, this is often referred to as a
Lattice-Boltzmann method (as the Boltzmann equation is solved in a lattice of points,
dictated by the Langevin equation). Solving a PDF collision method in this way is akin
to solving Navier Stokes without turbulent terms. Solving the Fokker-Planck model
using a Langevin method results in a means of solving the Reynolds-averaged Navier
Stokes equations in the form of a Reynolds stress transport model. This method is
referred to by Pope as the Generalized Langevin Method (GLM) (Pope 2000, Pope
1994, Haworth 1985). Various forms of the Fokker-Planck model lead to various forms
of Reynolds stress transport models, ranging from the simpler Launder, Reece, and
Rodi (Launder, et al. 1974) to more complex forms. The fact that well-known
turbulence models emerge from the steps above could be considered affirmation that
the analysis was correct. However, simply returning to a statistical mechanics-based
version of a well known turbulence model family also means that the new PDF method
inherits many of the previous problems associated with RST models, most important of
which is the inability to capture linear (rapid distortion theory limit) turbulence. Despite

the fact that PDF methods require no model for the triple correlation u,uu, (assuming

they remain in PDF and not RST form), they still suffer from many problems. This calls
in to question the need to accurately model the triple correlation and suggests that
perhaps it is in the pressure term that the missing physics may be found.

11




Advanced methods

Taking a step back from PDF methods for a moment, the recent work of
Reynolds & Kassinos (1996) will be considered briefly. Reynolds & Kassinos wished to
capture rapidly deforming homogenous turbulence with a Reynolds stress transport
model. They hypothesized that the stress tensor was not enough to capture rapid
distortion theory limit turbulence as information about the turbulent structure was not
contained within such a quantity. Among others, they proposed a general model which
transports a single, rank two tensor, the “eddy axis tensor” which characterizes the
shape and orientation of a turbulent eddy. The model employed algebraic equations of
state (as opposed to a stress tensor) and two scalar quantities thus containing
information about the dimensionality and “componentality” of the turbulence (Reynolds
& Kassinos 1996). The model managed to capture many linear turbulence cases
exactly, which was the first ever demonstration of an RST-like turbulence model
providing accurate solutions in this limit of turbulence. Unfortunately, many considered
the model difficult to understand (this author included) mainly due to the fact that the
entire model was formed in wave (Fourier) space. Despite this issue, the work
produced a powerful idea: Perhaps the failure of PDF-based turbulence models lie not
in the formation of the PDF collision model (e.g. Fokker-Planck) but instead in a
previously unimagined missing unknown, perhaps related to orientation of turbulent
eddies or, in the case of PDF methods, fluid particles.

Perot & Chartrand (2005) proposed a very general Fokker-Planck collision
model with more unknowns than the general Fokker-Planck model proposed by Pope
(2000):

z+v,. af+a,. F I:G,..(v,.—U,.)P:|+i H,..i
ot o ov, ov,-"’ ov,| o,
(20)
+i (J, +vu, g + & vaf + . vKni(ﬂ]
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with an additional term added to the end of Equation (20) to account for mesh motion,
which was related to a numerical method used by Perot & Chartrand to solve their
generalized Fokker-Planck method using an adaptive three-point mesh in velocity
space (Perot & Chartrand 2005). In Equation (20), G,,H, and J, are tensorial

if §
modeling terms, u, ; is the physical-space velocity gradient and K, the physical-space

gradient of the kinetic energy. Van Slooten and Pope (1996), and more recently Perot
and coworkers have attempted to overcome the inherent limitations of Fokker-Planck
based PDF turbulence models. Work by Perot determined that any extension of the
Fokker-Planck model would simply result in a slightly more complex but still inherently
limited RST model, unless orientation was given to the fluid particles, that is a Fokker-
Planck collision model was formed for something like rods or disks (later called eddies)
rather than particles which are spheres and have no orientation. This can be achieved
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by adding an “extra" unknown to a Fokker-Planck like collision model yielding
derivatives with respect to time, space, and the extra term, which could be thought of
as eddy orientation.

Van Slooten and Pope (1996) furthered the ideas presented by Reynolds &
Kassinos (1995) first by applying them to a PDF-based method solved with a particle-
based approach (a Monte-Carlo solution), and then using this new method to simulate
inhomogeneous linear turbulence. They implemented this extra information via a joint
PDF of velocity and a ““wave vector" which is related to the unit wave vector tied to a
given turbulent eddy size. The collection of these vectors are referred to as the
directional spectrum. This was a major step forward in PDF-based turbulence
modeling, but the method is both difficult to understand and expensive to solve,
requiring a large statistical sample in order to return reasonable results from the
particle-based solution. Furthermore, Van Slooten & Pope point out the need for
improved dissipation models.

Figure 4: Box A illustrates a hypothetical region of turbulent fluid as a classic particle collision model, like
Fokker-Planck or Boltzmann. The particles are spheres and cannot have any orientation. Box B is a
schematic of the same flow but with an expanded collision model that treats particles as rods rather than
spheres, thus including orientation information. Finally, box C illustrates disks (eddies), which appear to
be the shape necessary in order to capture linear turbulence.

Perot and Chartrand picked up where Van Slooten and Pope left off, believing that the
key to linear turbulence was indeed the extra "‘information" contained within the wave
vectors. They chose to add this information as a second derivative to the generalized
Fokker-Planck Equation (17):

5 5 5 5
al e T T ‘g[G,-,-(v,. =U)f |

o* & & (21)
+75[quif]+,3§i2f+"§izf
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noting the second derivative in onentation space, here denoted by the unknown vector
q,- This term acts as a sort of advection in orientation space, and ends up being

responsible for the decay terms present in the RST equation form of the eddy
orientation vector evolution equation. Perot and Chartrand interpreted this extra
information as eddy orientation (similar to Reynolds' and Kassinos' hypothesis), but
chose to transform the PDF collision model in to a RST equation form. The resulting
model was like a classic RST model but had extra information inherent to it, resulting in
a model which could capture fast pressure strain exactly, yielded excellent
experimental agreement in elliptical flows, and calculated linear turbulence exactly. The
dissipation term still required model tuning, but nearly all RST model issues had been
resolved. Furthermore, unlike the PDF form, when cast as an RST model the turbulent
transport term required a model, but models for this term are abundant and not difficult
to form. Figure 4 is a schematic illustration of this concept. A critical difference exists
between the model proposed by Reynolds & Kassinos (1996) and that of Perot: Perot's
real-space eddy orientation model did not take the moment of and subsequently
integrate over orientation space, whereas Reynolds & Kassinos did. This step allowed
Reynolds & Kassinos to cast their model in the form of a Reynolds stress transport
model which, in order to then incorporate the extra unknown, they multiplied with the
unknown vector yielding a third rank tensor transport equation. By choosing to forgo
this moment, Perot kept orientation in the Reynolds stress equation itself. This enabled
the evolution of the orientations to be prescribed in such as way that the full Reynolds
stress transport equation, complete with included orientation information, was exact in
the limit of linear turbulence.

More recent work by Perot, Chartrand and Andeme (2008) furthered progress
on the Oriented Eddy collision model, treating it, for the most part, as a modified RST
model rather than a PDF collision model. As was previously mentioned, Perot &
Chartrand chose not to integrate over orientation space thus one Reynolds stress
equation exists for each eddy orientation vector, and the average (that is, RANS-like)
Reynolds stress tensor is a simple average of all of the individual, per-eddy Reynolds
stress tensors. Perot and Chartrand proposed the followings per-eddy Reynolds stress
evolution equation (note that nomenclature has been updated from Chartrand (2005) to
be consistent with current versions of the model):

R, + V(z?kR,.j) = (22)
— qtq — — q q —
|:ui,k I [_21 ~ 0y ) 2ul,k :| qu * |:uj,k + (_,_21 - 5,-1 J 2u,, } R, (23)
q q
— 1
—-| avg”+— |R, (24)
TR
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G 1 i = i
8. | . . [R,.J.—K(é’,j—g]] (25)

ol L, 2 g
VT
QI q,
+[R&?+Rﬁq—‘;](AI+B,) (26)
+[(V+VT)Rg,k :I,k (27)

with R, the Reynolds stress tensor (one for each eddy), g, the eddy orientation vector
(and the quantity that makes this mode! look unusual compared with a classic RST

model), turbulent viscosity v, =\/K2/K—q2 noting an over bar indicates the quantity

averaged over all eddies, time scale 1/7, = 1??, Kronecker delta 3,

velocity #,, and constants C,,C, and «. Note that model also includes information

average

about the rotation vector for a non-inertial frame Q, in ,, namely #, =i,, +¢,Q,,
with ¢, being the permutation tensor. Equation (22) is the material derivative of the

Reynolds stress tensor. Equation (23) handles the stress tensor production, while
Equation (24) accounts for viscous dissipation. Equation (25) provides a return-to-
isotropy model for the Reynolds stresses (Perot & de Bruyn Kops 2006), and Equation
(26) ensures that the Reynolds stress tensor and eddy orientation vector (g,) remain
orthogonal, which is akin to enforcing incompressibility (Chartrand 2005). The terms
A4 + B, represent the return-to-isotropy model for the eddy vectors and a system
rotation term, respectively. Equation (27) is of course the viscous diffusion. It is

instructive to examine the eddy orientation evolution equation before these other
quantities are described:

q,,+V{z,q,)= (28)
iUy, (29)
—l(av?+ijqi (30)
3 T
—(A,. B B,.) (31)
1
+§[(V+VT)qi,k:|,k (32)

where Equation (28) is the material derivative of the eddy orientation vector, Equation
(29) handles production with Equation (30) providing for dissipation and Equation (31)
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being the standard diffusion term. Equation (31) has the eddy vector return-to-isotropy
term 4, and rotation term B,.

C 1
Ai=z__3 — |[3Nu — 84 (33)
VT,

with constant C, and NH=M/q_2. The rotation term B, ensures that the model
responds properly to rotation of non-inertial frame, and is defined as

oL (9,72 /¢

" th| 207K +0.25(Q} )

(34)

with the vorticity vector defined as Q, =¢,#, , +Q, recalling Q, is the rotation vector for
a non-inertial frame.

The origins of the terms above are described in detail by Chartrand (2005) They
are explained briefly below. The dissipation terms (Equations (24) and (30)) come from

observations of isotropic decay. The part of the parenthetical term avqg® originates
from low Reynolds number decay. The second term 1/z, handles high Reynolds

number decay. These are arguably the simplest terms in the model, and were
constructed first. Next, the production terms (Equations (23) & (29)) were constructed
using the exact linearized Navier Stokes equations for rapid distortion theory from
Pope (2000):

oR, [ (kk ) _ [k o
6_tj = [“:,k + [k—zl B2 ) 2 ] Ry + |:uj,k R (#I‘ . J 21l } Ry (35)

& _ g P
o "o, )

noting that k, is Pope's wave vector and that this is directly analogous to the eddy
orientation vector g,. The similarities between the exact RDT limit of the Navier Stokes
equations and the production terms for R, and g, are easy to see. The production and

dissipation terms to achieve viscous RDT. Anisotropic decay was tackled next. It is
interesting to note that this is first time that inter-eddy interactions must be accounted
for. Rotta's linear return to isotropy model (Rotta 1951) for the stress tensor was tested
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first. This version varied slightly from Equation (32) in that rather than an average
kinetic energy K being employed, the local K =1R  was employed. The so-called
“global” version was also tested, and found to perform better (Perot & Chartrand 2005).
Chartrand and Perot also tested their non-linear “EG” return model and found it
deficient in this application, thus choosing the “‘global” Rotta-like return to include in
OEC. Isotropy in OEC is not only by isotropic Reynolds stresses (on a local, per eddy
level) but also uniform distribution of unit eddy orientation vectors on a unit sphere.
Flows tend to distort their distribution and a method is needed to return to an isotropic
state. Chartrand (2005) investigated six different methods, the details of which will be
avoided here. The method employed in Equation (33) calculates the normalized
distribution of the eddy vectors N, and projects the eddy vectors according to the

difference between the normalizes distribution and the isotropic normalized distribution
represented by the Kronecker delta 6,,.

The Complete Original OEC model

The original OEC model evolves two quantities: the eddy orientation vectors, g,
and the Reynolds stressesﬁ,jwith the kinetic energy k calculated from the Reynolds

stresses as k= R, /2. The Reynolds stresses are averaged over all eddies to produce
R, which is then used in the momentum equation. The original OEC mode! was posed
as:

oR, B . e i
a—;+V-(ukR,.j)=Bj—(avq2+-,‘;)Ry—RyR+My+V-(v+v,)VRy -
94,

—— A ~ A AR ~ ~ ~
+'¥ '(ujqx') = TGy _c_laff(a ’ qu +#) q,—-(g, +5)+V(v+v,)Vg,
ot ” (38)
The first equation above evolves the eddy orientation vectors ¢, while the second
handles the local (per-eddy) Reynolds stresses Ru. Return to isotropy for ¢,is handled
by ¢, defined as

Up

C 2
o e P (3—"' N.—é.)”
g, 7, 1+CqRD"(:TJ o v T

(39)

with N,a.=[(1/N)Z¢},,¢},:|/q,2 and constantsC,,”andC,™. Note that C,”has been
abandoned in new versions of OEC, discussed below. Return to isotropy for 13,1. is

similarly handled by R * defined as
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with constantsC”,, andC™ . A:I,.jcombines rotation, eddy vector return to isotropy

and a term which ensures g,and R, are orthogonal, as shown in below:

W, = (R, &+ R, %)@+ ) @1)

It is important to note that several major nomenclature changes have occurred since
this form of the model was created. Hats ~ now indicate models based on a variant of
eddy vector (to be introduced later) and over bars now indicate averages taken over

eddies. The eddy vector return term §,* is now denoted simply 4 while the system
rotation term 5, has become B,. To be consistent, the Reynolds stress return to

isotropy term ﬁ’,]."is now 4, (to avoid confusing superscripts), the per-eddy local kinetic

energy is K and the eddy-averaged (often called global) kinetic energy is simply K .
The same scheme is used for the Reynolds stresses and eddy vectors.

Validation

Previous work on the oriented eddy collision model has resulted in the model
being validated across a wide variety of cases, both simple and complex turbulent
flows. Considering OEC's implementation in OpenFOAM, numerous validation cases
were re-run. Furthermore, several major modifications have been made to the basic
model including the addition of terms to handle near-wall asymptotic behavior of the
eddy vector and Reynolds stress tensor, the inclusion of a near-wall eddy rotation term
in an attempt to capture non-local wall effects (discussed later), the removal of several
modeling constants, and the derivation of three additional forms of the OEC model
whose aim it is to increase the numerical, temporal, and near-wall stability of the
model. Considering these changes, and the necessity to recreate many benchmark
cases in a manner useable by OpenFOAM, many previously performed tests were
once again performed, including one of the simplest cases, isotropic, homogenous
decay:
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Table 1: Initial conditions from de Bruyn
Kops’ DNS of isotropic homogeneous decay

de Bruyn Kops (DNS)
g(m’/s’) 0.782
K(m®Is®) 0.087
v(m®/s) 1.49e-5
Rey 655
0.08 T l T T T
(O
0.06 .
X 0.04 ]
0.02 |- a .
OO deBruynKops " O-090a0.A ~
— QEG -
0 | | | | | |
0 0.2 04 0.6 0.8 1 1.2 1.4

time (s)
Figure 5: Isotropic, homogeneous decay compared to DNS data from de Bruyn Kops , ef al. (1998).
Data from de Bruyn Kops, et al. (1998) was again employed for validation. As was

expected, agreement between OEC and the DNS data was excellent, and more
complex cases could be considered.

.Perfecting the system rotation term

The system rotation term (previously s,, now B ) was re-examined after long-

term stability for shear cases such as Matsumoto, et al. (1991) came in to question.
Several rotation term options were considered and their constants determined. The
current rotation term is defined in as
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(42)

with 1/7, =(E?)5 a decay constant, g,the eddy orientation vector, Q" = €2 a

modified system rotation vector, K the average (not per-eddy) kinetic energy, N the
number of eddies in the simulation and constants cand c¢;. Note the updated

nomenclature. The model was then subjected to more complex flow situations such as
rotating decay, a mixing layer, and several shear and strain cases.

Table 2: Initial conditions for Wigeland and Nagib (1978).

Wigeland & Nagib
A B C

g(m’/s®) | 14.85 | 14.67 [ 1494 | 296 | 3.49 3.36 | 2.77 | 3.36 | 22.26
K(m*/s*) | 0.098 | 0.0975 | 0.105 | 0.045 | 0.0462 | 0.051 | 0.029 | 0.033 | 0.096
v(m*ls) | 1.8e-5 | 18e-5 [ 1.8¢-5 [18e5| 1.8¢e-5 | 1.8¢e-5 | 1.8e-5| 1.8¢e-5 | 1.8e-5

Rer 36 36 41 38 34 43 17 18 23

Ror © 7.52 1.78 © 3.77 0.82 © 509 | 2.9

0, 0 20 80 0 20 80 0 20 80

Wigeland and Nagib (1978) provide data which test both rotating and non-rotating
decay, as seen in Figure 6:
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Figure 6; Rotating and non-rotating decay from Wigeland and Nagib, case A.
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Figure 7: Rotating and non-rotating decay from Wigeland and Nagib, case B.
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Figure 8: Rotating and non-rotating decay from Wigeland and Nagib, case C.

As Figure 6 through Figure 8 show, agreement is good across a range of Rossby and
Reynolds numbers. Rotating decay was also tested with results from Jacquin, et al.
(1990). Note that only the highest Reynolds number case is shown here as agreement
at lower Reynolds numbers was excellent and tested extensively previously.
Agreement with Jacquin’s high Reynolds number data was excellent.

Table 3: Initial condItions for Jacquin's rotating
decay.

Jacquin

A B c

gm?s®) | 1173 | 16.43 | 30.93

K(m?%s®) | 0153 | 0288 | 0.444

vim‘/s) | 1.51e-5| 1.51e-5 | 1.51e-5
Rer 127 281 457
Ror B 0.91 1.10
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Figure 9: Rotating and non-rotating decay from Jacquin, et al. with Ror = 1.10 (case C).
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Finally, data taken from Mansour, Cambon, and Speziale was also used to determine
the performance of OEC's rotation terms:

1

0.9

0.8

0.7

K\K®

0.6

0.5

04

0.3

Figure 10: OEC compared to rotating isotropic decay data from Mansour, Cambon, and Speziale (A).
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Figure 11. OEC compared to rotating isotropic decay data from Mansour, Cambon, and Speziale (B).
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Figure 12: OEC compared to rotating isotropic decay data from Mansour, Cambon, and Speziale (C).

24



0.95 =
0.9 - =
0.85 — =

0.8 - !%bo
0.75 |- __ -
0.7 |- R (o

0.65 |-
06 [ \O —
(o)
0.55 |- @ !
OO Mansour A Roy = 0.37 ) o
05 — OEC & o

0.45 | [ ] | 1 P

0 0.2 0.4 0.6 0.8 1 12 14 1.6
time (s)

K\K®

Figure 13: OEC compared to rotating isotropic decay data from Mansour, Cambon, and Speziale (D).

Table 4: Initial conditions for Mansour, et al rotating
cases.

Mansour, Cambon & Speziale
A | B C | D
g(m*/s°) 0.93 0.95
K(m®/s?) 0.964 0.977
v(m°®/s) 3.67e-2 1.49e-2
Rey 27.2 67.1
Roy 0.37 [ 0037 | 024 | 0.1

The model agreed well with available data (mostly from direct numerical simulations)
and mixing layer data from Winckelmans, Jeanmart, and Carati (2002) was used to test
the model's ability to capture the decay of kinetic energy and dissipation which differs
spatially. Kinetic energy results are shown in Figure 14 and dissipation results in Figure
15 . Carati's data is unique in a sense that we have access to both the kinetic energy
and the dissipation rate. OEC'’s prediction of the decay of both the average kinetic
energy K and average (calculated) dissipation

] - .
£ =NZ(Q2K)VCZ+K2|%| (43)

is quite close to Carati’s at t = 0.171 seconds. However, the model seems to slightly
over predict the kinetic energy at the later time and under predict the dissipation.
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Figure 14: Decay of kinetic energy versus position at three different times from Carati, ef al. (2002).
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Figure 15: Decay of dissipation versus position at three different times from Carati, et al. (2002).



OEC in the Rapid Distortion Theory Limit

The addition of orientation information to OEC enables the model's unique
ability to capture turbulence in extreme circumstances, such as those described by
rapid distortion theory (RDT). Pope (2000) covers this subject in detail. Amongst the
RDT cases considered and used for validation were the following: Axisymmetric
expansion, akin to an expansion in a wind tunnel in transverse directions; axisymmetric
contraction in which the turbulent flow is contracted in the transverse directions, plane
strain, and finally shear. The four cases are summarized in Table 5:

Table 5: RDT cases used for testing OEC in FOAM.

Axisymmetric | Axisymmetric | Plane Shear
contraction expansion Strain
Ry S =28 S 0
R, 1 S =) 0
2
R, 1 S S 0 0
2
R 0 0 0 S
Simi( 28 S NEN 238 =28 28

5 T T T T T I . ]

OO Theoretical - Rqq / K°
3" OORxn/K
OO Ry /K°
—=— 0.5%exp(X)

0 02 04 06 08 1 12 14 16 138 2

Figure 16: OEC subjected to plane strain and compared to theory (Pope 2000).
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Figure 17: OEC subjected to axisymmetric expansion and compared to theory (Pope 2000).
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Figure 18: OEC subjected to axisymmetric expansion and compared to theory (Pope 2000).
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Figure 19: A closer look at the behavior of the normalized stress component R,, compared to theory
(Pope 2000).

OEC in Shear Flow

After testing each term in the model, OEC was subjected to homogeneous
turbulent shear flow in order to compare with data available from Matsumoto, Nagano,
and Tsuji (1991) as well as L. Le Penven, J. N. Gence, and G. Comte-Bellot (1985).
This provided a means of testing the model as a whole while remaining geometrically
simple and not requiring wall boundary conditions.

Table 6: Summary of shear flow cases used to validate OEC

Matsumoto LePehven A LePenven B
SKle 30.6 4.71 0.43 0.33
Rer 18.18 152 612 846
Strain 0 2828 0 0 30 0 548 0 0 8.86 0 0
Tensor |\ o ol| o 0 o 0 19 0 0 -236 0
0 0 0 0 0 0 0 0 -4y 0 0 6.50
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Figure 20. Comparison to data from L. Le Penven, J. N. Gence, and G. Comte-Bellot, case A.
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Figure 21. Comparison to data from L. Le Penven, J. N. Gence, and G. Comte-Bellot, case B.

Results for Matsumoto, et al. (1991) low Reynolds number flow, Re, =18, are shown in
Figure 22:
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Figure 22: Shear data at a turbulent Reynolds number Re, =18 from Matsumoto, Nagano, and Tsuji
who provide data for the time evolution of the anisotropy tensor. Time in non-dimensionalized by the

shear, S.

The model agrees quite well with the data provided from Matsumoto, et al. (1991).
Results for higher Reynolds number Re, =152 flow, for a much longer span of

| characteristic time scale St, is shown below in Figure 23:
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Figure 23: Shear data at a turbulent Reynolds number Re;, =152 from Matsumoto, Nagano, and Tsuji

who provide data for the time evolution of the anisotropy tensor A,j.




Again, agreement is excellent with Matsumoto's data. With the successful
benchmarking of OEC with Matsumoto’s shear case, the model was ready for further
development. Of course, solid boundaries are always a concern with RSTM-like
models, and are currently a subject of intense research. Before tackling that problem,
however, the problem of temporal stability will be addresses.

Temporal Stability

Increasing the temporal stability of the code was addressed next and a 3™ order
low-storage Runge-Kutta time marching scheme was successfully implemented and
tested in OpenFOAM. For temporal discretization, the program utilizes a three step
Runge-Kutta time marching method (RK3), which is second order accurate. Denoting

intermediate solution steps as 7 and j, we arrive at the following low storage, second
order accurate form of the hybrid RK3 found in the code:

. 1
5 a=, +(5NJ'f (3,)
$ra = s +(At)-f(&n+l) (44)

Ynn =j;n+l +(%At).f(j3n+l)
2

where y | represents the intermediate velocity (flux), pressure, Reynolds stress, eddy

n+—

vector, or kinetic energy information. The first step of RK3 uses the explicit Euler
method to arrive at a solution at one half the time step. The code then uses this
midpoint solution to leapfrog to the end of the time interval. Finally, it performs another
Euler step to arrive at a solution at the next time step. The low storage method trades
off accuracy for minimal storage. Only two arrays need be stored for any given
calculation, the solution from the previous step,y,, and the result of the previous

intermediate step 7 or y. Implementing this method in to OpenFOAM was done for

OEC specifically, and not in a general form. OpenFOAM allows for runtime selection of
time stepping schemes, but is currently limited to one step schemes such as explicit
Euler or second order schemes such as Crank-Nicholson. As such, any higher order
scheme such as RK3 must be added to FOAM.

As was the case with boundary conditions (discussed below), there are
generally two approaches to implementing a new feature in FOAM. The first is to spend
the effort of creating a generic, templated entity (in this case a time derivative scheme),
fold this code in to the existing framework, and then call the method. While more
attractive to the general user, the time required to do this is often not worth the reward.
In this case, the RK3 scheme was “hard coded” in to OEC and employ's FOAM's
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explicit Euler time derivative scheme for temporal sub-stepping. FOAM stores the
previous values for a given entity (such as an eddy vector) making implementation
easier. Old values can be easily recalled, and in certain circumstances FOAM's default
behavior can be overridden using the “.storeOldTime()” function. This was especially
useful when constructing the RK3 scheme in OpenFOAM as there are a good number
of intermediate arrays to be stored for the Reynolds stress tensor, eddy vector, kinetic
energy, and velocity at each cell for every eddy. Future work on OEC in OpenFOAM
may include the development of a general Runge-Kutta time marching scheme for
users of the model and the general public.

Solid Boundaries

After temporal stability issues were overcome, effort shifted to slip and no-slip
boundary conditions. These are imperative for wall-bounded flows or flows over objects
which are of paramount importance to engineers and are the focus of our current work.
The model is currently being tested using benchmark cases such as turbulent Couette
flow, turbulent channel (Poiseuille) flow and a backward facing step. In addition, more
complex cases such as flow around an oblate spheroid have been considered.
Preliminary work on turbulent flow (Re=5000) over an oblate spheroid using OEC
running in parallel on four processors is shown in Figure 24 and Figure 25 :

Figure 24: Velocity streamlines from turbulent flow over an oblate spheroid using the OEC model. The
spheroid’s surface is no-slip while the domain walls are zero gradient.
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Figure 25: Velocity streamlines from turbulent flow over an oblate spheroid using the OEC model. The
wake can be easily seen in this slice.

Trials continue with simulations over solid boundaries including turbulent Couette flow,
turbulent channel flow, and flows over an oblate and prolate spheroid.

Modifications for near-wall stability

Unfortunately, as is the case with many Reynolds stress transport models
(RSTM), problems arise when walls are introduced as both the Reynolds stress and
kinetic energy become zero at the boundaries. In order to maintain stability at walls, the
OEC model was recast to evolve the Reynolds stresses normalized by the kinetic

energy, R',j =R, /K. This necessitated an evolution equation for the kinetic energy K

as well. The eddy orientation vector equation was unchanged. The new casting of the
OEC model became:

oK _ 1
E+V-(qu) = -Ku,, —g(a-qu +L)K -
+PK-AK+MK+V(v+v,)VK
B 3 () =7 R -(ave )8
t (46)

—(4, - Ry 4" )+(M, —~R,M")+V-(v+v,) VR,
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noting that the equation for g, is unaltered and that C, =2. The first equation above
evolves the per-eddy kinetic energy K. In Equations (45) and (46), P,J is the same as
P, except it involves R, as opposed to R, which is true for M, as well. P'=0.5P, and

similarly M"=0.5M,. The Reynolds stress retum to isotropy term 4 is slightly
different from the one found in the original OEC model, as shown in below:

i Ul G R‘_E(5 _ﬁ)
A” 7 1+CRRDn[L) [ v o g\V ¢ 47)

Vr

noting that the average kinetic energy K is normalized by the local (per-eddy) kinetic
energy K Evolving R,J allows the per-eddy Reynolds stress R to be calculated via

R, = R,;K which does not present problems when K =0. Once complete, the newg,, K,
R; (“gkRStar”) casting of OEC was tested using the same cases that were employed
for the original ¢,, R, (“qR") model. Results from the two models matched closely.

Near-wall behavior of turbulent eddies

In addition to ensuring stability at walls, it is necessary to ensure that the eddies
(i.e. the eddy orientation vectors and subsequently the per-eddy Reynolds stresses)
interact with the region near a wall (the large-scale damping effect). In addition, the
eddies must align themselves properly to ensure they are not embedded within the
wall:

i TT77T777 T 77777727727 2727777777

wall wall

Figure 26: Eddies that intersect solid boundaries must be rotated out of the way. A) This rotation
preserves the magnitude of the eddy, which does not affect the near-wall dissipation. B) This scaling
achieves the same goal, but affects the near-wall dissipation.

As such, an additional term is effectively added to (although not explicitly stated in)
both the g, and R, or R,J equations. One method rotates the eddy vector away from

the wall while maintaining its magnitude, shown in Figure 26 A. This method does not
affect the near-wall dissipation by maintaining the length scale (eddy vector
magnitude). A second method, illustrated in Figure 26 B, changes the magnitude of
the eddy vector, which of course affects the eddy vector magnitude (by decreasing it)
and thus the near wall dissipation. For the first case, the angle between the old and
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new eddy vectors is calculated and Rodrigues’ rotation formula applied to align R or
R,.J'.in with the new eddy vector incompressibility (i.e. orthogonality between g,and R, or

R,.J'.). Implementation details and the algorithm employed to perform this rotation are
discussed later.

The presence of walls in a turbulent flow imparts so-called non-local effects on
the flow, specifically affecting turbulent redistribution. Durbin (2001) discusses two of
the most common methods that near-wall modeling is achieved, pressure echo and
elliptical relaxation. Both methods seek to alter turbulence quantities near to but not at
a wall in order that the model return more realistic results. Solid boundaries tend to
cause regions of strong inhomogeneity, production and shear. The region acts to
suppress wall-normal turbulence, which can have a drastic effect on the nature of the
near-wall Reynolds stress tensor. Unfortunately, most RSTMs lack a mechanism to
ensure this behavior, thus special consideration must be made. OEC is no different,
and the aforementioned “near wall rotation” of the eddy vectors is this model's novel
solution to the problem. Great care must be taken when attempting to use RST models
near solid boundaries where the velocity and Reynolds stresses tend to zero. At the
moment, wall functions and damping are the most popular methods employed to
handle solid boundaries. Not only is it imperative that the value at the boundary be
prescribed, but the model must also behave properly as it approaches the wall,
meaning the model's asymptotic behavior must be considered. If the fluctuating velocity
is considered to be a smooth function of the distance from the solid boundary y, then it

can be expanded as a Taylor series, viz. u, = p,+q,y+ry’ withp,, g,, and r, functions

of the wall-tangent directions, and truncating higher order terms. If the velocity at the
wall is zero, u,(y=0)=0, then p, =0 which implies » and u, (in the tangential x and

z directions, respectively) approach the boundary like y. Furthermore, if continuity is
invoked, it is found that velocity in the wall normal direction u, approaches the wall

like y*. Using this information, the near wall asymptotic behavior of the individual
Reynolds stress tensor components can be assessed: m wuy, and wuu, wil
approach like y*. uu, and u,u, will go like )*, and u,u, like y* (Durbin 2001, Pope

2000). It is not trivial to ensure this behavior, and is an area of active research for the
Oriented Eddy Collision model. The near-wall region creates other difficulties: the
highest shear rate is often located at a solid wall, and the normal velocity being forced
to zero at the wall tends to affect the flow away from the wall via pressure (often called
“wall blocking"). '

Another subtlety which arises when implementing wall boundary conditions for
the eddy orientation vectors g,. At a shear free (slip) wall, the eddies align themselves

to be tangential to (in the plane of) the wall and the magnitude of the eddy should
remain unchanged. At a no-slip wall, however, the eddy size should approach zero.
Considering g, has units of 1 / length, an eddy of zero size would correspond to a g, of

infinity. In order to avoid this problem, the OEC model has once again been re-cast to
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evolve the eddy length itself, L, =q /q*, which has units of length and thus can be set
to zero at no slip walls. This will be covered in the next section.

Avoiding Troublesome Boundary Conditions

Numerous changes have been made to both the OEC model and its
nomenclature, most of which centered on casting the model in such a way that it would
be stable at solid boundaries and numerically tractable. As mentioned previously,
evolving a quantity like the eddy vector g, (hats will be dropped hereafter) is
troublesome as the quantity goes to infinity at a solid boundary if the eddy length scale
goes to zero. This is a problem separate from near-wall local effect discussed in the
previous section. Since its initial casting and subsequent modifications with a
normalized Reynolds stress tensor, several changes have been made to the
nomenclature as well as a symbolic representation of the near-wall rotation performed
on the eddies. The original eddy orientation evolution equation, in its current form:

Dq,
th —qkuk.—%(m’q +1jq, (ol B )it [(V+V)q,k] +W, (48)

with near-wall rotation term W,. The current form of the return to isotropy term for the
eddy vectors 4:

@
4= A'{ CDn }[3N 5ki:|qk (49)

Tr

with the isotropy tensor N, =g,4,/q> determining the departure of the eddy vectors

from theory original (spherical) isotropic condition. The current system rotation term
B is defined as:

9.9, ) /q
B' =L ( 8 ) = (50)
Tr |20.04°K +0.25(,")
recalling the time scale is defined as
1
1 _[7.7)
L-(7) 2
and the turbulent viscosity as
1
| 2 [
(%) >
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Note that, for simplicity’s sake, the hats (which previously indicated a “per-eddy”
quantity) have been dropped. In addition, the previous rotation constants have been

hard coded as Cf =20.0 and C{ =0.25. The corresponding Reynolds stress tensor is

currently posed as
qlq o qq —_—
{ ( L ,,)2 ,k}R +[ (—;Tl—é'j,qu,,k}R,d

(avq + ) A4+ M, +[ v+v Ruk] (53)
K), (K),
D(v+v)[K:|k(K)k E(v +v,)( : (K)’ R, +W,

with near wall rotation term W, responsible for rotating the Reynolds stress tensor,

using Rodriguez’s’ rotation formula, to be aligned with the rotated near-wall eddy. The
return to isotropy term for the Reynolds stress tensor, now written 4, takes its final

form as
CA.. 1% q.9;
o= L R -K|6, -
4 % {VT+Cf"V}[ ( q J:| (54)

noting the change in nomenclature for the two return constants C41 and C,”. Itis

important to note that one return constant was eliminated, and C,” is common to both

the eddy evolution equation and the Reynolds stress equation. In fact, all model
constants remain consistent through the various versions presented here. A term is
required to maintain orthogonality between the eddy vector and the Reynolds stress
tensor (a condition which is also enforced by the near wall rotation term if it acts upon a
given eddy vector and stress tensor in the domain). This term is written as

My. =(R Z’ +R, qZ](A +B,) (55)

with 4, and Bthe eddy vector return to isotropy and system rotation terms defined
above. D and E are numerical constants, currently setto D =2 and E = 0.

As was mentioned previously, the requirement of infinite boundary conditions applied
to the eddy orientation vectors ¢, led to the re-casting of OEC in terms of

L =gq,/q*which has solid boundary conditions of L =0. Note that a hat ~ now
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indicates a model quantity based on L, rather than g,.The evolution equation for the
new eddy vector:

DI, _ ] 1 |2, 1£],
Dt =“(5fn‘2%)(Lk”m)+§(av(7)_2v 7t r‘lR =
(56)

(8. - 25[2’1)(21" +l§") +H{v+vL, ]+,

with W once again representing the near wall rotation term, which will be discussed

later. Similar to the original form of the model, the return model is cast as such, noting
that additional tuning using high Reynolds number shear flow from Matsumoto was
employed to remove a tuning constant from the numerator:

T o v 2
=4 X 3N, —o. |
A, fR {VT+C5"V}[ in kn:| k (57)

noting the isotropy tensor ]Vb, is now defined as

s &5 |7
N, =| =% |/ = 58
= ((L’)’] (LZJ =0

|-

v, =| =K (59)

The time scale is now written

%:(E@T (60)

The system rotation term for the L -based model becomes
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Note that Zl”[aV(L) 2v| |L| | +—JL above is an approximation. The exact
R

derivation (or conversion) from the ¢,-based model to the L -based model returns a
dissipation term similar to that in the original casting of the model, namely

l(av(%)+%} L with several additional terms added the L, evolution equation:

3 Tp
- . 2% VR
_%(v+vT)?(Lz ),k Ly +%(v+ vy ) I {(F)k (_LT),,}Li (62)

These terms may be of some significance near solid boundaries and are the subject of
future work. With the above model for the eddy length scale L , a corresponding model

for the Reynolds stress tensor, now based on L, can be constructed:

DR, [_ (LI .2 LL 57
D =[ui,k+( B _5"]2 ”’}R J{ +(71_5”)2u"k}&
1 1 g y 5
_[aV(F}-E]R’!’ —4;,+M, +[(V+V')R"!"" :l,k (63)

w(w&,)[%] (K),—E(v+ ,)(12 (13"12,.].+W,.j

Note the similarities between the version of the stress tensor evolution equation based
on the original eddy vector g,and its current form. Now, rather than denoting local,

“per-eddy” quantities with a hat, we denote quantities based on the new eddy length
scale L, with a hat. The return to isotropy of the Reynolds stresses based on L is

written as
. C. “ _ &5,
. T o S
YT {0T+cf"v} & K(‘s"f Lz] i
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and the corresponding orthogonality term
M, =(RyL+R,L;)(4 +5,) ©5)

As was discussed in the previous section, a version of the model was also formulated
for the evolution of the Reynolds stress tensor normalized by the kinetic energy,

R, =R,/ K where the star notation indicates that the stresses have been normalized.

The current version of R, based on the original eddy vector g,

DR; B q.9 " . q,9 —» .
Dr =|:u,k+( '—5 ]2 ,k:|R,g+|:uj,k+[?"—5ﬂ 2ul,k R,a.
_ qnq * . * .
—{[unk ( = ] ] }Ry—Av +M, +[("+Vr)Rv,k],k (66)
] )

+(2- D)(v+v)[ &

(K

with the return to isotropy term defined as

C
Aij. =2 { = Dn } Ri; i 5:'1' q’qzj (
T (VG Y q

and the orthogonality term

K
-K—) (67)

b

M = (R. 4 +R, qu(A +B,) (68)
q’ q

Note that model terms based on the normalized Reynolds stress tensor R; also carry
with them an asterisk *. Employing a normalized stress tensor

OF g | B T - Pereo il I | W
Dt _|:ui,k+( qz il]zul,kilRla' [avq +1.R K 2Aﬁ+2Mix

K k K k
H[(vr+vp)K, ], - B(vavy) e

(69)
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As a fourth and final version of the OEC model, a version which combined the new
eddy vector L and the normalized Reynolds stress tensor R,-,'was created in hopes that
the two variations would provide the most stability near solid boundaries:

DR, [_ (LIL, . (ZL o
Dtj [,k“'( L —5,,)2u,k}R,g+|:uj’k+(?'—5j,j2u,,k}€,d

LL — - * ~w A A *
—{{ U, +( iz 5,.:)2“:;}&}&‘47 +M, +[(V+V’)Ry'k:|,k (70)

(K) 4
K

+2-D)(v+V, )[R Jk

where once again D and is a numerical constant set to D = 2, this zeroing final term in
the evolution equation and avoiding potential numerical stability issues. The return to
isotropy term for the Reynolds stresses corresponding to the normalizes stress tensor
model based on L :

j (71)

ir-Sal ¥ “a)|(
U - T i3
M, =(R,L,+R,L;)(4+B) (72)

with the orthogonality term written as
i

]

As was the case with the previous normalized stress tensor variant of OEC, an
evolution equation for the kinetic energy K is required. In this case, this equation is
constructed using the eddy length scale L,:
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The above four versions of the Oriented Eddy Collision model constitute the most
current version of the model under development in OpenFOAM. Considering the
difficult nature of capturing such a flow, the high Reynolds number Matsumoto case
was used to compare the performance of the each model:
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Figure 27: Taking another look at the Matsumoto ReT = 152 shear case, this time comparing all four
model variants presented above. All four models show excellent agreement.

As seen above in Figure 27, the three additional models match the original “qR™
“gkR*", which normalizes the stress tensor by the kinetic energy and has a transport

equation for the kinetic energy, “LR" which used the eddy length vector L, rather than
the original ¢,, and “IkR*'which employs both the eddy length vector L and the
normalized stress tensor R *=R, /K.

The terms preceded by D and E are relatively new to the model (as compared to
previous versions) and warrant discussion. The first involves the gradient of a
Reynolds stress tensor. For models without normalized stress tensor these terms are

D)ok | e
(v+v,) I ’k( )k (74)
and
(K), (K)
—E(V—*—V,) K’k K’kRij (75)

in the Reynolds stress equation (for both models based on g, and L). For those
involving the normalized Reynolds stress tensor R *, the term of interest in the
Reynolds stress equation is
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(K).

(2-D)(v+ v,)[R,;],k = (76)
The “extra” term in the kinetic energy equation is
x « (B ) (K
—E(y+7,) BB a7

The terms in the Reynolds stress equation (Equations (74) and (75)) and by extension
that in the normalized Reynolds stress equation (Equation (76)) come from expanding
the last term in the original OEC formulation (Equation (12) ) and helps ensure the
near-wall asymptotic behavior of the model. Note that D is often chose to be 2, thus

eliminating the extra term in the R *, which is desirable considering it can cause

numerical difficulty near walls. E is chosen to be zero in an attempt to ensure that
g’ (the average eddy vector magnitude) approaches a solid boundary like
(2/a)/y2where alpha is a tunable constant, usually set to a=15.0. Note that

OpenFOAM currently does not support tensors above rank two, and the
implementation details of this term will be discussed later.

Implementing OEC in OpenFOAM

What is OpenFOAM?

The majority of the initial effort in this project focused on implementing the
oriented eddy collision model in an open source collection of computational fluid
dynamics libraries written in C++ called OpenFOAM. FOAM is unique in that much of
the mathematical and numerical framework required to perform advanced CFD is
already in place, available for any user to copy and modify for their own needs. Despite
having a vast assortment of CFD-related tools, solvers, and utilities, the latest version
of OpenFOAM (version 1.7.1 from OpenCFD LTD) has few Reynolds stress transport
model implemented. In fact, it has only two: The Launder, Reece, and Rodi (1974)
model and a variant, the Launder Gibson RSTM. Adding the OEC model to FOAM was
not trivial, as no other model currently in FOAM must account for two to three transport
equations for every eddy at every cell. This amounts to an entire collection of transport
equations that must be carefully handled within FOAM, and is the first construct of its
type to be implemented in FOAM. In its current form, OEC employs anywhere from 22
to over 1,200 eddies for simulations. The number of eddies available to the code is
controlled by how the eddies may be arranged uniformly on a unit sphere.
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Figure 28: FOAM provides a vast collection of operators to streamline the numerical side of
implementing a turbulence model like OEC.

Figure 28 illustrates the power of OpenFOAM in that the software provides a wide
variety of useful operators which eases the task of implementing a complex model
such as OEC. The entry above constructs the evolution equation for ¢,, and is
contained within FOAM's “fvWectorMatrix” entity, the “fv” indicating “finite volume”.
Similar entities for tensors, “fvTensorMatrix” and scalars, “fvScalarMatrix” exist. All
terms on the left hand side of the equation are cast implicitly, and are part of the matrix
on the left hand side of the system to be solved which can be thought of as A4x =5 with

Aa rank two tensor (matrix) which must be inverted, xthe vector of unknowns, and

b the vector of known on the right hand side. Operators such as “fvm::ddt” easy to

identify: “ddt” takes the time derivative of its argument, in this “qiINT” which is the eddy
vector for the current eddy. Note that transport equations such as this are constructed
for eddy vectors, Reynolds stress tensors, and in some cases the scalar kinetic energy
for every eddy at every cell location in the computation mesh. In FOAM, “fvm::" casts
the operator in the “finite volume method”, which essentially places the operator (and
resulting term) on the left hand (implicit) side of the equation, in 4. For example, the
Laplacian operator (used for the viscous diffusion term) is cast implicitly for stability
purposes. The “SuSp” operator makes a decision about the location of the source term
(and thus whether it is cast explicitly or implicitly, placed in 5 or 4) based on its sign.
Alternatively, operators may be cast using “fvc::”, standing for “finite volume calculus”,
which is an explicit casting. This can be thought of as placing the resulting term in 5.

For example, the convection term is handled with a call to “fvc::div”, which performs an
explicit divergence operation on the flux “phi_" and the eddy vector. The eddy vector

production term —gq,u, ,employs an explicit gradient operator (there is no such thing as
an implicit gradient operator) along with FOAM’s inner product, “&". Finally, explicit
source terms such as the return-to-isotropy A4 and rotation term B, which are
constructed beforehand, can simply be added directly to the equation.

Initial conditions for eddy vectors

A variety of initial conditions for the eddy vectors ¢, and L, are available for use
with OEC. These initial conditions are in the form of a collection of vectors which are
uniformly distributed on the unit sphere. These vector lists were originally created by
Chartrand (2005) and have been adapted for use in OpenFOAM. The number of
eddies employed in a given simulation is akin to the size of the statistical sampling
space given to the underlying probability density function evolution equation underlying
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the model. In theory, the more statistical sample space (eddies) given to the model, the
better representation of the underlying physics is returned. This, however, comes at a
cost, one which is brought to light as the details of implementing such a system in
OpenFOAM are considered. Specifically, a system is required by which an arbitrary
number of eddy vectors may be used in any given simulation. Based on the number of
eddies (N), each cell in the computational domain must be populated with N Reynolds
stress tensors, N eddy vectors, and N transport equations for each. In addition, model

variants that employ the normalized stress tensor R,j' =R, /K require a third transport

equation for the scalar kinetic energy. Two to three transport equations for each eddy
at each physical location in the computational mesh (i.e., at each cell) requires precise
accounting. Pointer lists are employed for this purpose in FOAM. For some number of
initial eddy vectors N, a pointer list with N entries is constructed for the eddy vectors
themselves, for the corresponding Reynolds stress tensors, and if necessary for the
scalar kinetic energy. A subtlety arises in this implementation, which will<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>